(x+5)^2-4x(2x+3)^2-(2x-1)(x+3)(x-3)

3 min read Jun 17, 2024
(x+5)^2-4x(2x+3)^2-(2x-1)(x+3)(x-3)

Simplifying the Expression (x+5)^2-4x(2x+3)^2-(2x-1)(x+3)(x-3)

This article will guide you through the process of simplifying the given algebraic expression:

(x+5)^2-4x(2x+3)^2-(2x-1)(x+3)(x-3)

Let's break it down step by step:

1. Expanding the Squares

  • (x+5)^2: This is a perfect square trinomial. We can expand it using the formula (a+b)^2 = a^2 + 2ab + b^2.

    So, (x+5)^2 = x^2 + 2(x)(5) + 5^2 = x^2 + 10x + 25

  • (2x+3)^2: Similarly, we can expand this using the same formula.

    (2x+3)^2 = (2x)^2 + 2(2x)(3) + 3^2 = 4x^2 + 12x + 9

2. Expanding the Products

  • (2x-1)(x+3)(x-3): Here, we can use the difference of squares formula: (a+b)(a-b) = a^2 - b^2.

    First, multiply (x+3)(x-3) = x^2 - 9. Then, multiply the result with (2x-1).

    (2x-1)(x^2 - 9) = 2x^3 - 18x - x^2 + 9

3. Substituting the Expanded Forms

Now, substitute the expanded forms back into the original expression:

(x^2 + 10x + 25) - 4x(4x^2 + 12x + 9) - (2x^3 - 18x - x^2 + 9)

4. Distributing and Combining Like Terms

  • Distribute -4x:

    -4x(4x^2 + 12x + 9) = -16x^3 - 48x^2 - 36x

  • Combine like terms:

    x^2 + 10x + 25 - 16x^3 - 48x^2 - 36x - 2x^3 + 18x + x^2 - 9

  • Simplify:

    -18x^3 - 46x^2 - 8x + 16

Final Simplified Expression

Therefore, the simplified form of the given expression is -18x^3 - 46x^2 - 8x + 16.

Related Post